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ABSTRACT

This paper studies forced almosgt periodic oscillations
in a nonlinear gystem of two vV lterra integral equations, It is a
goquel paper to an earlier paper nn the seme topic, Earlier re-
sults are improved in two ways, First it i1s shown that the
oscillatory solution is Lyapunov stable under small perturbations
in the coefficients of the equation, Secondly it is shown that
whenever the coefficients ere quasiperiodic and analytic, the almosv

periodic oscillation is in the same class,
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AILMOST T'ERTODIC BEHAVICR OF SOLUTIONS OF A
NONLINEAR VOLTERRA SYSTEM, II

R. K. Miller

I. Introduction,
in this paper we continue the study of forced oscilla-
tions in a nonlinear system of Volterra integral equaticn:s of the

form

t

[ 8, (t-8)g, (5,%, (8),%,(5))ds

(1.1) xl(t) !

i
!

£, (t)

t
é az(t-s)gz(s,xl(s),xz(s))ds,

t
é az(t-s)gl(s,xl(s),xz(s))ds

xe(t) fé(t)

t
é al(t-s)g2(s,xl(s),xz(s))ds.

In an earlier paper [1l] sufficient conditions were given so that
the solutions xl(t) end xz(t) tend to certain almost periodic
limiting functions Pl(t) and Pz(t) as t - o, In this paper
we shall improve the previous results in two ways. Firstly, it
will be shown that this oscillatory behavior is stable under small
perturbations in the functions f, and gy That is the solution

i
of the perturbed problem is oscillatory and is near the solution
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of the unperturbed problem, Secondly, we give rather weak sufficient
conditions in order that the limiling functions Pl(t) and P2(t)
are analytic in €,

We shall follow the notation in [1] and shall freely use
results from that peper., In particular we rewrite (1.l) in the

vector form

t
(E) x(t) = £(t) - é A(t-s)G(s,x(s))ds

where A(t¢) is the appropriate matrix and x,f and G are two

dimensional column vactors. The vector norm will be
|x| = max (|x,[,|x,]), if x=

The symbol Q will always denote the special matrix

_o-t/2f 1 1
od

(1.2) Q

Note that Q = Q- and that |Q| = /2. For any N >0 the re-
solvent of NQA(t)Q will be denoted by RN(t). Using RN(t), the
variation of constants formula and the change of variables

Xx = Qy + f(t) one car rewrite system (E) in the equivalent form



t
(E,) y(t) = [ Ry(t-8)(y(s) - Gy(s,y(s))}ds
0
where Gn(t,y) = QG(t,Qy+f(t))N'l.

System (1,1) erises in a natural wey from the initial -

boundary value problem

(1.3) ug = (t >0, 0<x <),

u(0,x) = F(x) (0 <x <),
and

ux(t,o) = gl(t,u(t,O),u(t,W)), ux(t,n) =

= -gy(t,u(t,0),u(t,m),

for all t > 0, 1In particular, we have in mind boundary con-

ditions motivated by C. C. Lin's theory of superfluidity (see [2]

or [3])%

(1.4) gl(t,xl) = Bl(xl-cl sin klt)3, ga(t,xa) -

= 32(x2-c2 sin kat)B.

As an application of the results prover here and in [1] we shall

prove the following result,



Theorem 1, Consider the problem (1,3-4) with F,. € 02[0,1r]. Then

0
given any B > O there exists € > 0 such that if IBi-Bl < e

for 1=12 and If F € 02[0,71] with

2

ngom;x Ing)(x) . F('j)(x)| <e

then the boundery functions wu(t,0) and wu(t,w) tend asymptotically

as t - w to almost periodic limiting functions Pl.(t) and T, (t).

The functions u(t,0), u(t,n), Pl(t) and Pa(t) all vary con-

tinuously with F, BJ‘, 32, Cl and 02.

the form Pi(t) = Pi(klt,kat) where Pi(el’ea) is real analytic

Moreover, each Pi(t) has

in (91,92) and is 2r-periodic in each of its two variables,




IT. Perturbation Results,
Ascume that the coefficient functions f,G and A in

(E) satisfy the following hypotheses:
o« w0 ’
(A1) a,(t) =1+ 2% .exp(-n°t), a,(t) = 1+ 2% . (-1)exp(-n-t)
1 T =l > "2 n=1

and

al(t) a2(t) \
A(t) = .
ae(t) al(t)

(A2) f(t) is continuous and bounded on 0 s t < =,

(A3) G(t,x) 4is continuous in (t,x) for all t 2z 0, |x| < =,

G is locally Lipschitz continuous in x end G(t,0) = Q.

(A4) The function G(t,x x2) has the -ecial form

1’

g(t,x,)
G(t,xl,xz) =
g(t,x,)

where g(t,y) is an odd nondecreasing function of y which is
bounded in t € (-m,o) uniformly for y on any compact subset

‘ of _(-«5~).



The following hypotheses are related to (Ah):

(A5) There exist positive numbers N and K such that if
|y] & K then Iy-GN(t,y)I < X uniformly for all t € (-e,),
Hlere y ¢ R2 is a two dimensional column vector and GN is
the function defined below (EN).

(A6) There exist positive numbers N’KO and KJ such that if
|yl % K, then |y-Gy(t,¥)| % K; <K, uniformly for all

t € (-oo,m),

The proof of Lemma 3 in [1l] is actually a proof of the

following stronger result,

Lerma 1, Buppose G satisfies (A3) and (A4) and b 2

sup [|f{t)]: t 2 0}). Then for any M > V2 b and for any € 1in

the interval 0 < € < b there exists a number N > 0 such that

(A5) is true with K = M + €, Moreover, if L is a constant such

that

L2 sup (|G(t,y)]|: -»<t <w [x] s5M),

then N depends only on the nuabers M,€ and L.

Using Lemma 1 we now nroves

Lemma 2, Suppose G satisfies (A3) and (A4), Then G satisfies




(AG) where N and K= Kl are the aumbers obteined in Lemma 1

apove,

Proof, Let K = KJ. and N be given by Lemma 1,

We must show that there exists a number KO < Kl such

that (A6) is true, For a contradiction we suppose there is no
such Ko. Then for each pcsitive integer n there existu numbers

y. and t_ such thet
n n

Wy, = Gy (t,,w ) 2 K - 1/n,

By pusslbly taking a subsequence we may assume that Y, yo,
GN(tn,yn) - g, end f(tn) —»f, es a- e Note that |yo| s K.
Define x = Q.Yn 4 f(t;n) so that X, X, = Qyo + fo.

Write Xy end v = NQgO in terms of their components

Xo = col(xol,xoa), Y = NQg, = col(yy,7,).

Define

g“(z) = | I'rll if z= |x01| :




Extend g"(z) lineacly between the points 0, Ixoll and |x02|,
extend g* as a constant or the remaining part of the half line
z20 and let g (-z) = -g*(z) when =z < 0., Define G'(xl,xa) -
col (g*(xl), g*(x,)) for all x, and x,. Note that c*(xo).
Nng.

The function G* defined in this wuy satisfies (A3) and

(A4) and has the seme upper bound I as the function G in

Lemnas 1 end 2, 8ince |y | &K, then Lemma 1 implies that
ly, - Q@*(Qv+f )N} <k
0 00 i

On the other hand it follows by the construction of G* and the

choice of Yo and &y that

v - Q.G*(Qyo"o)n-l' = Iy - Qc’*("o)'rl|

= ¥y - &)l 2 K.
This contradiction completes the proof. Q.E.D.

Theorem 2, Suppose (Al-4) are true and b = sup (|#(t)]: t 2 0}.

Consider the perturbation problem

t
(PE) X(t) = F(t) - [ A(t-8)(G(s,X(s)) + P(s,X(s))}ds,
0



where P is continuous in (t,x). inen for any € > O there

exists a nomber & > 0 such that if

sup (|P(t,x)|% t 2 0, |Q(x-F(t))] <V2b+€)<B

then the solution X(t) of (PE) exists for all tz 0 end

satisfies the inequality

lQ(X(t) - ¥(t))] = V2 b+ e,

Proof, Define H(t,x) = G(t,x) + P(t,x) and let HN(t,y) =
QH(t,Qy + F(t))N°l. Given K, = V2 b +e choose N and Ko

using Lemma 2, Choote 8 < N(Kl-Ko)!QI'l so that
-1 ! a2
|QP(t,Qy - F(E))N"| s [Q[oN"" < Ky - Ky
If |y| s K, then by the choice of & one has

| (9| 5 16, (t,3)] + |QR(t,Qy - F(£))N"]
< Ko + (Kl-Ko) = Klo
Thus H(t,x) scatisfies (A3) and (A5)., Now apply Theorem 4 of

[1]. Q.E.D.



10

Theorem 3, Suppose the coefficlents f,A end G of (E) satisfy

(Al-4), Define |[fll = sup (|f(t)|s t 2 0). Suppose that given

any A > 0 there exists a positive, continuous, Increasing fun.tion

a(u) such that

(g(t,u+x) - g(t,x)})/u z a(|u]) (Ju] = A)

uniformly for all t 2 O and all x such that [Q(x-f(t))| =

J2 |£]] + 4, Then given any € > O there exists a positive number

® such that whenever

i) F(t) is any continuous function satisfying [f-F| =

sup (|f(t) - F(t): t 2 0} < B,

ii) P(t,x) is any continuous runction satisfying
sup (|P(t,x)|s t 2 0, |Q(x - £(t))] 5 V2ifll + 4) < 8,

and

iii) X(t) is the unigue solution of (PE),

then |x(t) - X(t)| s€ for all t z O,

Proof, Define y(t) = x(t) - X(t), ®(t) = £(%) - F(t) eand

H(t,y) = G(t,y+X(t)) - G(t,X(t)). Then one has

t
y(t) = o(t) --é A(t-s) (H(s,y(s)) - P(s,X(s))}ds

or symbolically

b
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y=9 - A(H(y) - P(X)]}.
let Y = Qy, AN = NQAQ and }{N(t,‘{) : Q}{(t,QY)I-I'l so that

(2.1) Y= (Q + Ap(Y - H(Y) + QP(X)}N’l) - AT,

1f RN is the resolvent of AN’ that is

(2:2) Ry = Ay - ARy

then any equation of the form Y = 8 - AN*Y may be written in the
equivalent form Y = § - RN*S. Applying this to (2.1) end using

the relation (2.,2) one can calculate

Y= @+ Ap(Y - Hy(Y) + QRN - Rpap
- RFAX(Y - H(Y) + QRN

(2.3) Y= 0p - Ry¥gn + Ry*(Y - H(Y) + Qp(x)N 1)

or

t
@:3)  ¥(®) = Q(t) - @ [ Ry(t-s)o(s)as +

t
[ Ry (6-8)(¥(s) - H (s,¥(s)) + Q(s,X(s)N })as.
0




Define 8, = ((t,x): t 20, |Q(x - F(t))| 5 V2||F| + 1)
end let 8, = ((t,x)! t 20, |Q(x - £(t))] s V2|l + 4. If

loll = I|£-F|| <1, and if (t,x) € 8, then

|Q(x - £(t))] s |Q(x - F(t))| + |Q|llf - F

sV2IF| + 1+ V2.1 s 2(If]] +# 1) + 1+ V2
s V2|1l + b,

Therefore, S, C 8, if leli < L. By Theorem 2 there exists a

number &, > 0 such that if |P(t,x)] < 8, on 8, then X(t)

exists for ull t 2 0 and (t,X(t)) € Sy
Write H(t,x) in the form H(t,x) = col (Mlxl’M2x2)

where
My (t,%) = (B(t,%4X, (%)) - 8(6,X(6)))/x, (5 = 1,2).

Then Y - I{N(t,Y) can be written in the form

W o B
Y - Hy(t,Y) = A(t,Y)Y, A = = B
- +
' 1% I v

If M(t,x) = col (Ml(t,xl), M, (%,%5)) and if IM(t,Q¥| < N then

the norm of {he matrix A is
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|A] = 1 - [M(t,QY)|/N = max (1-M,/N, 1-M,/N}). For any number
K>0 if |Y| s K/2, then since |A| <1 one has [AY| s K/2, If
K/2 s |Y| s K, then either |[Y,+Y,| or |Y1-Y2| z K/2, Therefore,
the hypotheses of the theorem imply that |M(t,QY)| 2 a(k/2) >0

for some function a(u). This means that
|Y-HN(t,Y)| s 1 - a(k/2)/N (k/2 s |Y| s K).

Consequently, for any given € >0, 1if K = e/J'é' then there exist
positive numbers N and K, such that if |Y| s €/42 then
Y - HN(t,Y)I s Ky < e/ V2. The number & in the conclusion of the
present theorem wili be chosen so that & s min (60,1} and such that
Ljf - Fl| + 2|P(1:.‘,x)|N'l s6ds¢g - \/EKO for all (t,x) e 8,. For
this choice of & we shall show that |y(t)| = |x(t) - X(t)]| s ¢
for all t 2z O, Equivalently, since Q = Q,'l and |Q] = \/_2-,
then we may show S lY(t)| = |Q(x(t) - X(t))]| = e/v/2.

Let W= (z € C[0,w)s |2(t)| s €/A/2 for all t z 0}
and let TZ Dbe the map defined by the right hand side of (2.5),
that is

t
T2(t) = @(8) - Q J Ry(s-s)o(s)ds +

t
[ Ry(t-8) (2(s) - Hy(e,2(s)) - QP(s,X(s))N "} ds.
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t
By Lemma 1 of [1l] the matrix Ry € LJ(o,m) and é IRN(t-s)Ids s 1

for all t 2 O, Thercfore, if 2z ¢ W,

t

|72(t)| = V2 lloll + V2 lioll [ |Ry(t-s5)|ds +
0

: t t
+ N l\/a—ma.x | P(t,x)] é |RN(t-s)|ds + é IRN(t-s)IKods

8

£ 22 |loll + v/2 nax IP(t,x)IN'l + K
S
|

s65+xose/\/—.

0

This shows that Tz e W if 2z e W. If the space C[0,») is given
the topology of uniform convergence on bounded subsets of [O,a),
then it becomes a locally convex linear topological space with the
additional property that T. C[0,®) — C[0,») is a completely con-
tinuous map, Since W 1is a closed bounded convex subset of

C[O,») and T maps W into itself, then the Schau. r fixed point
theorem applies, This means that (2.3') has at least one solution
Y(t) such that |Y(t)| s €/v/2 for all t 2 C. But the function
H(t,Y) 1is locally Lipschitz continuous in Y so that the solution

of (2,3') is unique, that is Y(t) = Q(x(t) - X{t)). Q.E.D.
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I1I. Quasi-Periodic Functions,
Let kl’k2""’km be positive constants which are
linecarly independent over the integers., Let k denote the vector

k = (kl’ka,...,km) With m B l.

Definition, A function ¢(t) will be called quasipericdic with

fundanental frequencies k if and only if there exists s function

®(0) = @(61,62,...,6m) continuous in 6 and periodic in each

variable GJ of period 2w such that

o(t) = o(kt) = o(klt,kat,...,kmt), o<t < w,

Each quasiperiodic is easily seen to be almost periodic,
If m=1 so that k = kl then the quasiperiodic function is
actuelly periocdic,

According to the results in [1] if x = Qy + f(t) then
for any N > 0 the function y(t) solves (EN). Conditions are
given Which guarantee that y(t) tends asymptotically to an almost

periodic function p(t) where

t
3.1) . p(t) = [ Ry (t-5)(p(s) - Gy(s,p(s))}ds, -w<t<wm,

The function p is the unique solution of (3.1l) if N is

sufficiently large.
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The aim in this section is to give sufficient conditions
in order that p(t) = P(kt) 4is quasiperiodic and P(8) is enalytic

in 6, Assume;

(A7) @(t,x) = r(kt,x) and f£(t) = ¢(kt) are quasiperiodic in ¢
with fundementel frequencies k. Moreover, v{6,x) and @(0) are

real analytic functions of (6,x) and @ respectively in regions

i Re GJ < @

for 1sjsm and 1= 1,2)

(3.2) U(ao) = ((O,X): IIm GJI, IIm xil < 50, -0 < Re x

and

(3.3)  D(8,) = (e: | 1m 93' <8, .-w<Ref, <ew for 1sjsm),

0 J

Under this assumption it follows that the function
-1
Ty (kb,¥) = Qr(kt,Qy + o(kt))N

is also quasiperodic and analytic in U(8o). If the solution of
(3.1) was quasiperodic, say p(t) = P(kt), then (3.1) could be
rewritteh as

t
P(kt) = J RN(t-s)[P(ks) - yh(ks,P(ks))}ds

= [ Ry(s)(P(kt-ks) - vy (kt-ks,P(kt-ks))}ds.
0
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Since k = (kl,ke,...,kn) is a vector of lineerly independent
frequencies and P(6) 4s continuous in 6, then this is equivalent

to the equation

(3.14) P(6) = [ RV(S)[P(G-ks) - rN(e-ks,P(e-ks))]ds.
o ° .

Conversely, if P(6) is any continuous solution of (3.4) such that
P(6) is 2n-periodic in each variable GJ, then p(t) = P(kt)
will solve (3.1). Therefore, our problem is reduced to finding an
analytic and periodic solution of (3.4).

For any & > 0 the symbols D(8) or U(8) will denote
regions defined in the manner of (3,2) and (3.3). Using this no-

tation we now prove the following:

Theorem 4, Suppose (Al-3) and (A6-7) are true, Then there exists

a &> 0 such that (3.4) has a solution P(@) which is real

analytic in 6 € D(8) and 2m-periodic in each variable 6

J.
Prcof., Let N,Ko and Kl be the numbers given by (A6). For any
 in the interval 0 < &< 3§, let (8) denote the set of a

functions 7(@) real analytic in 6 € D(8) and 2m-periodic in each
variable aJ. If %(8) is given the topology of uniform con-
vergence on compact subsets of D(8), then this family beccmes a
locally convex linear topological space over the real numbers.

Define
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8= (2 e F(8): |2(0)] s K, for all 6 ¢ D(3))

1

where K, 4s the constant in (A6), Then 8 is a'closcd, convex,

1
nonempty and compact subset of F(8), 8ince (A6) is true for

G(t,x) = v(kt,x) &and since k = (kl’ke”"’km) is a vector with

linearly independent components, then

ly - v(6,y)| sk, <¥, if |y| sk, (6,y) € U(8)

and (6,y) is real. By continuity there exists a number & with

0< 8 < 50 such that

ly - v(e,¥)| sk, if [y| sk,  and (6,y) € U(®)

where (6,y) 4is now allowed to be complex, This is the appropriate 8,

For any Z € 8§ define
TZ(0) = IN%N(B)[Z(G-kS) - 1h(9-ks,z(e-ks))}ds, 6 € D(8).
0

' 5
By Lemma 1 of [1] the matrix R.N(t) € Ll(O,u) with [ IRN(t)Idt s 1,
0

This means that TZ(6) is well defined, TZ ¢ %(8) and

| TZ(0)| sé IRN(B)IKlds $ K.
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In particular T maps S8 into 8 continuously,, By the Schauder
fixed point theorem T has a fixed point, Q.E.D.
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IV, Outline of the Proof of Theorem 1,
The results in section 2 of [1] show that (1.,3) is

equivalent to (E) with xl(t) = u(t,0) end x2(t) = u(t,r), with

£,(t) = F /2 + xZ.-:lF“ e)tp(-nzt), f,(t) = Fo/2+ k§l Fn(-l)nexp (-nt)

and with

7, - (2/v)f"£(x) cos nxdx,
0

It is easy to prove that fl(t) and fa(t) vary continuously in
the uniform norm over O s t <o as F varies in the norm of
Ca[o,v]. The results in section 2 above show that xl(t) and
xa(t) vary continuously (again in the uniform norm over 0 5 t < =)
as f and g vary.

The results in section 6 of [1] are sufficient to see
that xl(t) and xa(t) are asymptotic to almost periodic functions
pl(t) and pa(t) such that p(t) = col (pl(t),pa(t)) solves
(3.1). If k, and k, are linearly independent, then Theorem L
above implies that p(t) is analytic and quasiperiodic with
fundamental frequencies k1 and k2. Finally, note that since
|e(t) - x(t)] 20 as t —»w where p(t) is almost periodic and
x(t) varies continuously with f and g, then p(t) varies con-

tinuously (in the uniform norm over -o< t < w) with f and g.
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Ifr k]. and ka are linearly dependent over the integers, then the
gsame conclusion follows but with p{t) a periodic function,
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